6x^2[(3x-4)+(4x+2)]=x

Simple and best practice solution for 6x^2[(3x-4)+(4x+2)]=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2[(3x-4)+(4x+2)]=x equation:


Simplifying
6x2[(3x + -4) + (4x + 2)] = x

Reorder the terms:
6x2[(-4 + 3x) + (4x + 2)] = x

Remove parenthesis around (-4 + 3x)
6x2[-4 + 3x + (4x + 2)] = x

Reorder the terms:
6x2[-4 + 3x + (2 + 4x)] = x

Remove parenthesis around (2 + 4x)
6x2[-4 + 3x + 2 + 4x] = x

Reorder the terms:
6x2[-4 + 2 + 3x + 4x] = x

Combine like terms: -4 + 2 = -2
6x2[-2 + 3x + 4x] = x

Combine like terms: 3x + 4x = 7x
6x2[-2 + 7x] = x
[-2 * 6x2 + 7x * 6x2] = x
[-12x2 + 42x3] = x

Solving
-12x2 + 42x3 = x

Solving for variable 'x'.

Reorder the terms:
-1x + -12x2 + 42x3 = x + -1x

Combine like terms: x + -1x = 0
-1x + -12x2 + 42x3 = 0

Factor out the Greatest Common Factor (GCF), 'x'.
x(-1 + -12x + 42x2) = 0

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(-1 + -12x + 42x2)' equal to zero and attempt to solve: Simplifying -1 + -12x + 42x2 = 0 Solving -1 + -12x + 42x2 = 0 Begin completing the square. Divide all terms by 42 the coefficient of the squared term: Divide each side by '42'. -0.02380952381 + -0.2857142857x + x2 = 0 Move the constant term to the right: Add '0.02380952381' to each side of the equation. -0.02380952381 + -0.2857142857x + 0.02380952381 + x2 = 0 + 0.02380952381 Reorder the terms: -0.02380952381 + 0.02380952381 + -0.2857142857x + x2 = 0 + 0.02380952381 Combine like terms: -0.02380952381 + 0.02380952381 = 0.00000000000 0.00000000000 + -0.2857142857x + x2 = 0 + 0.02380952381 -0.2857142857x + x2 = 0 + 0.02380952381 Combine like terms: 0 + 0.02380952381 = 0.02380952381 -0.2857142857x + x2 = 0.02380952381 The x term is -0.2857142857x. Take half its coefficient (-0.1428571429). Square it (0.02040816328) and add it to both sides. Add '0.02040816328' to each side of the equation. -0.2857142857x + 0.02040816328 + x2 = 0.02380952381 + 0.02040816328 Reorder the terms: 0.02040816328 + -0.2857142857x + x2 = 0.02380952381 + 0.02040816328 Combine like terms: 0.02380952381 + 0.02040816328 = 0.04421768709 0.02040816328 + -0.2857142857x + x2 = 0.04421768709 Factor a perfect square on the left side: (x + -0.1428571429)(x + -0.1428571429) = 0.04421768709 Calculate the square root of the right side: 0.210280021 Break this problem into two subproblems by setting (x + -0.1428571429) equal to 0.210280021 and -0.210280021.

Subproblem 1

x + -0.1428571429 = 0.210280021 Simplifying x + -0.1428571429 = 0.210280021 Reorder the terms: -0.1428571429 + x = 0.210280021 Solving -0.1428571429 + x = 0.210280021 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1428571429' to each side of the equation. -0.1428571429 + 0.1428571429 + x = 0.210280021 + 0.1428571429 Combine like terms: -0.1428571429 + 0.1428571429 = 0.0000000000 0.0000000000 + x = 0.210280021 + 0.1428571429 x = 0.210280021 + 0.1428571429 Combine like terms: 0.210280021 + 0.1428571429 = 0.3531371639 x = 0.3531371639 Simplifying x = 0.3531371639

Subproblem 2

x + -0.1428571429 = -0.210280021 Simplifying x + -0.1428571429 = -0.210280021 Reorder the terms: -0.1428571429 + x = -0.210280021 Solving -0.1428571429 + x = -0.210280021 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1428571429' to each side of the equation. -0.1428571429 + 0.1428571429 + x = -0.210280021 + 0.1428571429 Combine like terms: -0.1428571429 + 0.1428571429 = 0.0000000000 0.0000000000 + x = -0.210280021 + 0.1428571429 x = -0.210280021 + 0.1428571429 Combine like terms: -0.210280021 + 0.1428571429 = -0.0674228781 x = -0.0674228781 Simplifying x = -0.0674228781

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.3531371639, -0.0674228781}

Solution

x = {0, 0.3531371639, -0.0674228781}

See similar equations:

| 13x+24=4x+33 | | -18=3(x-5)+9 | | 2(5s+5)-4=2(3s+5)-13 | | -2x-23=3x-28 | | -18=(x-5)+9 | | 3x-17=2x-21 | | 4x+43=3(5x-4) | | 19-1.5x=17 | | 2x-8=5(x+5) | | 46=2(4x-1) | | -1(5x+5)=-x-7 | | 3x+14=2(4x-3) | | 2lnx=1forx | | -24=2(2x+2) | | 2x-5=4(x+5)-3 | | 5(x-5)=x+11 | | -30=5(x+4) | | 2x-12=2(2x+2) | | 2(2x+5)=-34 | | -3.8w-2.4=-1.8w+1.8 | | 4(3x+5)=-4x-28 | | 13+(-8)-12= | | -10=5(5x-5)-10 | | 4(7x+3)-5(5x+2)=2(3x+5) | | 4(x-5)-5=3x-27 | | -3.8w-2.4=-1.8w | | -5x-21=2(3x-5) | | 95e+6=4 | | 95+6=4 | | -17-20-(-18)= | | -24=2(2x-2) | | 3x*2=2(x+1)-6 |

Equations solver categories